Complex Geometry Exercises

Week 3

Exercise 1. Let X be a topological space, and A be an abelian group. Consider the presheaves

- $\mathcal{F}_1(U) = A$ for all open sets $U \subseteq X$,
- $\mathcal{F}_2(U) = A$ for all open sets $\emptyset \neq U \subseteq X$ and $\mathcal{F}_2(\emptyset) = 0$,

with the obvious restriction maps in all cases.

- (i) Show that neither \mathcal{F}_1 or \mathcal{F}_2 are sheaves.
- (ii) Show that they have the same étale space, given

$$\acute{E}t(\mathcal{F}^{const}) = X \times A$$

where A is endowed with the discrete topology, and so $\mathcal{F}_i^+ = \underline{A}$.

(iii) Compute $\underline{A}(U)$ for a given open set U.

Exercise 2. Show that a sequence of sheaves

$$\mathcal{F} \xrightarrow{\alpha} \mathcal{G} \xrightarrow{\beta} \mathcal{H}$$

is exact if and only if the corresponding sequence of stalks

$$\mathcal{F}_x \xrightarrow{\alpha_x} \mathcal{G}_\S \xrightarrow{\beta_x} \mathcal{H}_x$$

is exact for all $x \in X$.

Exercise 3. Show that for a topological space $X, U \subset X$, a closed subset with inclusion map $j: U \hookrightarrow X$ and a sheaf \mathcal{F} of abelian groups on U,

$$H^q(U,\mathcal{F}) \cong H^q(X,j_*\mathcal{F})$$

for all q > 0.

(continues on the back)

Exercise 4. Let X be a complex manifold. We say a sheaf is a coherent sheaf if every point $x \in X$ has an open neighbourhood U in X an an exact sequence

$$\mathcal{O}_X^p|_U \to \mathcal{O}_X^q|_U \to \mathcal{F}|_U \to 0$$

for some natural numbers p and q.

- (i) Show that the sheaf of sections of a holomorphic vector bundle is a coherent sheaf.
- (ii) Show that a coherent sheaf where we can take p = 0 for all points has an associated holomorphic bundle associated to it.

Let $\iota: Z \hookrightarrow X$ be a closed submanifold in X.

(iii) Show that the ideal sheaf of Z, denoted by \mathcal{I}_Z , is coherent, where

$$\mathcal{I}_Z(U) = \Big\{ f \in \mathcal{O}_X(U) \big| f|_Z = 0 \Big\},$$

for $U \subseteq X$ open.

- (iv) Show that the direct image $\iota^*\mathcal{O}_Z$ is a coherent sheaf.
- (v) Prove that there is a short exact sequence of sheaves:

$$0 \to \mathcal{I}_Z \to \mathcal{O}_X \to \iota^* \mathcal{O}_Z \to 0$$
.

Exercise 5. Show that

$$H^q(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}) \cong egin{cases} 0 & \textit{for } q
eq 0 \\ \mathbb{C} & \textit{for } q = 0 \end{cases}.$$